Расчет погрешностей непосредственных измерений. Вычисление случайных погрешностей при измерениях


В этой теме буду писать что-то вроде краткой шпаргалки по погрешностям. Опять же, данный текст ни в коей мере не официальный и ссылаться на него недопустимо. Буду признателен за исправление любых ошибок и неточностей, которые могут быть в этом тексте.

Что такое погрешность?

Запись результата эксперимента вида () означает, что если мы проведем очень много идентичных экспериментов, то в 70% полученные результаты будут лежать в интервале , а в 30% - не будут.

Или, что тоже самое, если мы повторим эксперимент, то новый результат ляжет в доверительный интервал с вероятностью, равной доверительной вероятности .

Как округлять погрешность и результат?

Погрешность округляется до первой значащей цифры , если она не единица. Если единица - то до двух. При этом значащей цифрой называется любая цифра результата кроме нулей впереди.

Округляем до или или но ни в коем случае не или , поскольку тут 2 значащие цифры - 2 и 0 после двойки.

Округляем до или

Округляем до или или

Результат округляем таким образом, чтобы последняя значащая цифра результата соответствовала последней значащей цифре погрешности .

Примеры правильной записи :

мм

Мм Держим тут в погрешности 2 значащие цифры потому что первая значащая цифра в погрешности - единица.

мм

Примеры неправильной записи :

Мм. Здесь лишний знак в результате . Правильно будет мм.

мм. Здесь лишний знак и в погрешности, и в результате. Правильно будет мм.

В работе использую значение, данное мне просто в виде цифры. Например, масса грузиков. Какая у нее погрешность?

Если погрешность явно не указана, можно взять единицу в последнем разряде. То есть если написано m=1.35 г, то в качестве погрешность нужно взять 0.01 г.

Есть функция от нескольких величин У каждой из этих величин есть своя погрешность. Чтобы найти погрешность функции надо сделать следующее:

Символ означает частную производную f по x. Подробнее про частные производные .

Положим, вы меряли одну и ту же величину x несколько (n) раз. Получили набор значений.. Вам необходимо посчитать погрешность разброса, посчитать приборную погрешность и сложить их вместе.

По пунктам.

1. Считаем погрешность разброса

Если все значения совпали - никакого разброса у вас нет. Иначе - есть погрешность разброса , которую надо вычислить. Для начала вычисляется среднеквадратичная погрешность среднего:

Здесь означает среднее по всем .
Погрешность разброса получается умножением среднеквадратичной погрешности среднего на коэффициент Стьюдента , который зависит от выбранной вами доверительной вероятности и числа измерений n :

Коэффициенты Стьюдента берем из нижеприведенной таблицы. Доверительная вероятность выбитается произвольно, число измерений n мы также знаем.

2. Считаем приборную погрешность среднего

Если погрешности разных точек разные, то по формуле

При этом естественно, у всех доверительная вероятность должна быть одинаковой.

3. Складываем среднее с разбросом

Погрешности всегда складываются как корень из квадратов:

При этом нужно убедиться, что доверительные вероятности с которыми были вычислены и совпадают.


Как по графику определить приборную погрешность среднего? Ну т.е., используя метод парных точек или метод наименьших квадратов, мы найдем погрешность разброса среднего сопротивления. Как найти приборную погрешность среднего сопротивления?

И в МНК и в методе парных точек можно дать строгий ответ на этот вопрос. Для МНК форума в Светозарове есть ("Основы...", раздел про метод наименьших квадратов), а для парных точек первое, что приходит в голову (в лоб, что называется) это посчитать приборную погрешность каждого углового коэффициента. Ну и далее по всем пунктам...

Если же не хочешь мучиться, то в лабниках дан простой способ для оценки приборной погрешности углового коэффициента, именно из МНК следующий (например перед работой 1 в лабнике "Электроизмерительные приборы. ..." последняя страница Метод.рекомендаций).

Где - величина максимального отклонения по оси Y точки с погрешностью от проведенной прямой, а в знаменателе стоит ширина области нашего графика по оси Y. Аналогично по оси X.


На магазине сопротивлений написан класс точности: 0,05/4*10^-6? Как из этого найти погрешность прибора?

Это означает, что предельная относительная погрешность прибора (в процентах) имеет вид:
, где
- наибольшее значение сопротивления магазина, а - номинальное значение включённого сопротивления.
Легко видеть, что второе слагаемое важно тогда, когда мы работаем на очень малых сопротивлениях.

Подробнее всегда можно посмотреть в паспорте прибора. Паспорт можно найти в интернете, забив марку прибора в гугл.

Литература про погрешности

Гораздо больше информации по этому поводу можно найти в рекомендованной для первокурсников книге:
В.В. Светозаров "Элементарная обработка результатов измерений"

В качестве дополнительной (для первокурсников дополнительной) литературы можно порекомендовать:
В.В.Светозаров "Основы статистической обработки результатов измерений"

И уж тем кто хочет окончательно во всем разобраться непременно стоит заглянуть сюда:
Дж. Тейлор. "Введение в теорию ошибок"

Спасибо "у за нахождение и размещение у себя на сайте этих замечательных книжек.

Физические величины характеризуются понятием «точность погрешности». Есть высказывание, что путем проведения измерений можно прийти к познанию. Так удастся узнать, какова высота дома или длина улицы, как и многие другие.

Введение

Разберемся в значении понятия «измерить величину». Процесс измерения заключается в том, чтобы сравнить её с однородными величинами, которые принимают в качестве единицы.

Для определения объёма используются литры, для вычисления массы применяются граммы. Чтобы было удобнее производить расчеты, ввели систему СИ международной классификации единиц.

За измерение длины вязли метры, массы - килограммы, объёма - кубические литры, времени - секунды, скорости - метры за секунду.

При вычислении физических величин не всегда нужно пользоваться традиционным способом, достаточно применить вычисление при помощи формулы. К примеру, для вычисления таких показателей, как средняя скорость, необходимо поделить пройденное расстояние на время, проведенное в пути. Так производятся вычисления средней скорости.

Применяя единицы измерения, которые в десять, сто, тысячу раз превышают показатели принятых измерительных единиц, их называют кратными.

Наименование каждой приставки соответствует своему числу множителя:

  1. Дека.
  2. Гекто.
  3. Кило.
  4. Мега.
  5. Гига.
  6. Тера.

В физической науке для записи таких множителей используется степень числа 10. К примеру, миллион обозначается как 10 6 .

В простой линейке длина имеет единицу измерения - сантиметр. Она в 100 раз меньше метра. 15-сантиметровая линейка имеет длину 0,15 м.

Линейка является простейшим видом измерительных приборов для того, чтобы измерять показатели длины. Более сложные приборы представлены термометром - чтобы гигрометром - чтобы определять влажность, амперметром - замерять уровень силы, с которой распространяется электрический ток.

Насколько точны будут показатели проведенных измерений?

Возьмем линейку и простой карандаш. Наша задача заключается в измерении длины этой канцелярской принадлежности.

Для начала потребуется определить, какова цена деления, указанная на шкале измерительного прибора. На двух делениях, которые являются ближайшими штрихами шкалы, написаны цифры, к примеру, «1» и «2».

Необходимо подсчитать, сколько делений заключено в промежутке этих цифр. При правильном подсчете получится «10». Вычтем от того числа, которое является большим, число, которое будет меньшим, и поделим на число, которое составляют деления между цифрами:

(2-1)/10 = 0,1 (см)

Так определяем, что ценой, определяющей деление канцелярской принадлежности, является число 0,1 см или 1 мм. Наглядно показано, как определяется показатель цены для деления с применением любого измерительного прибора.

Измеряя карандаш с длиной, которая немного меньше, чем 10 см, воспользуемся полученными знаниями. При отсутствии на линейке мелкого деления, следовал бы вывод, что предмет имеет длину 10 см. Это приблизительное значение названо измерительной погрешностью. Она указывает на тот уровень неточности, которая может допускаться при проведении измерений.

Определяя параметры длины карандаша с более высоким уровнем точности, большей ценой деления достигается большая измерительная точность, которая обеспечивает меньшую погрешность.

При этом абсолютно точного выполнения измерений не может быть. А показатели не должны превышать размеры цены деления.

Установлено, что размеры измерительной погрешности составляют ½ цены, которая указана на делениях прибора, который применяется для определения размеров.

После выполнения замеров карандаша в 9,7 см определим показатели его погрешности. Это промежуток 9,65 - 9,85 см.

Формулой, измеряющей такую погрешность, является вычисление:

А = а ± D (а)

А - в виде величины для измерительных процессов;

а - значение результата замеров;

D - обозначение абсолютной погрешности.

При вычитании или складывании величин с погрешностью результат будет равен сумме показателей погрешности, которую составляет каждая отдельная величина.

Знакомство с понятием

Если рассматривать в зависимости от способа её выражения, можно выделить такие разновидности:

  • Абсолютную.
  • Относительную.
  • Приведенную.

Абсолютная погрешность измерений обозначается буквой «Дельта» прописной. Это понятие определяется в виде разности между измеренными и действительными значениями той физической величины, которая измеряется.

Выражением абсолютной погрешность измерений являются единицы той величины, которую необходимо измерить.

При измерении массы она будет выражаться, к примеру, в килограммах. Это не эталон точности измерений.

Как рассчитать погрешность прямых измерений?

Есть способы изображения погрешности измерения и их вычисления. Для этого важно уметь определять физическую величину с необходимой точностью, знать, что такое абсолютная погрешность измерений, что её никто никогда не сможет найти. Можно вычислить только её граничное значение.

Даже если условно употребляется этот термин, он указывает именно на граничные данные. Абсолютная и относительная погрешность измерений обозначаются одинаковыми буквами, разница в их написании.

При измерении длины абсолютная погрешность будет измеряться в тех единицах, в которых исчисляться длина. А относительная погрешность вычисляется без размеров, так как она является отношением абсолютной погрешности к результату измерения. Такую величину часто выражают в процентах или в долях.

Абсолютная и относительная погрешность измерений имеют несколько разных способов вычисления в зависимости от того, какой физических величин.

Понятие прямого измерения

Абсолютная и относительная погрешность прямых измерений зависят от класса точности прибора и умения определять погрешность взвешивания.

Прежде чем говорить о том, как вычисляется погрешность, необходимо уточнить определения. Прямым называется измерение, при котором происходит непосредственное считывание результата с приборной шкалы.

Когда мы пользуемся термометром, линейкой, вольтметром или амперметром, то всегда проводим именно прямые измерения, так как применяем непосредственно прибор со шкалой.

Есть два фактора, которые влияют на результативность показаний:

  • Погрешностью приборов.
  • Погрешностью системы отсчета.

Граница абсолютной погрешности при прямых измерениях будет равна сумме погрешности, которую показывает прибор, и погрешности, которая происходит в процессе отсчета.

D = D (пр.) + D (отс.)

Пример с медицинским термометром

Показатели погрешности указаны на самом приборе. На медицинском термометре прописана погрешность 0,1 градусов Цельсия. Погрешность отсчета составляет половину цены деления.

D отс. = С/2

Если цена деления 0,1 градуса, то для медицинского термометра можно произвести вычисления:

D = 0,1 o С + 0,1 o С / 2 = 0,15 o С

На тыльной стороне шкалы другого термометра есть ТУ и указано, что для правильности измерений необходимо погружать термометр всей тыльной частью. не указана. Остается только погрешность отсчета.

Если цена деления шкалы этого термометра равна 2 o С, то можно измерять температуру с точностью до 1 o С. Таковы пределы допускаемой абсолютной погрешности измерений и вычисление абсолютной погрешности измерений.

Особую систему вычисления точности используют в электроизмерительных приборах.

Точность электроизмерительных приборов

Чтобы задать точность таких устройств, используется величина, называемая классом точности. Для её обозначения применяют букву «Гамма». Чтобы точно произвести определение абсолютной и относительной погрешности измерений, нужно знать класс точности прибора, который указан на шкале.

Возьмем, к примеру, амперметр. На его шкале указан класс точности, который показывает число 0,5. Он пригоден для измерений на постоянном и переменном токе, относится к устройствам электромагнитной системы.

Это достаточно точный прибор. Если сравнить его со школьным вольтметром, видно, что у него класс точности - 4. Эту величину обязательно знать для дальнейших вычислений.

Применение знаний

Таким образом, D c = c (max) Х γ /100

Этой формулой и будем пользоваться для конкретных примеров. Воспользуемся вольтметром и найдем погрешность измерения напряжения, которое дает батарейка.

Подключим батарейку непосредственно к вольтметру, предварительно проверив, стоит ли стрелка на нуле. При подключении прибора стрелка отклонилась на 4,2 деления. Это состояние можно охарактеризовать так:

  1. Видно, что максимальное значение U для данного предмета равно 6.
  2. Класс точности -(γ) = 4.
  3. U(о) = 4,2 В.
  4. С=0,2 В

Пользуясь этими данными формулы, абсолютная и относительная погрешность измерений вычисляется так:

D U = DU (пр.)+ С/2

D U (пр.) = U (max) Х γ /100

D U (пр.) = 6 В Х 4/100 = 0, 24 В

Это погрешность прибора.

Расчет абсолютной погрешности измерений в этом случае будет выполнен так:

D U = 0,24 В + 0,1 В = 0,34 В

По рассмотренной формуле без труда можно узнать, как рассчитать абсолютную погрешность измерений.

Существует правило округления погрешностей. Оно позволяет найти средний показатель между границей абсолютной погрешности и относительной.

Учимся определять погрешность взвешивания

Это один из примеров прямых измерений. На особом месте стоит взвешивание. Ведь у рычажных весов нет шкалы. Научимся определять погрешность такого процесса. На точность влияет точность гирь и совершенство самих весов.

Мы пользуемся рычажными весами с набором гирь, которые необходимо класть именно на правую чашу весов. Для взвешивания возьмем линейку.

Перед началом опыта нужно уравновесить весы. Линейку кладем на левую чашу.

Масса будет равна сумме установленных гирь. Определим погрешность измерения этой величины.

D m = D m (весов) + D m (гирь)

Погрешность измерения массы складывается из двух слагаемых, связанных с весами и гирями. Чтобы узнать каждую из этих величин, на заводах по выпуску весов и гирь продукция снабжается специальными документами, которые позволяют вычислить точность.

Применение таблиц

Воспользуемся стандартной таблицей. Погрешность весов зависит от того, какую массу положили на весы. Чем она больше, тем, соответственно, больше и погрешность.

Даже если положить очень легкое тело, погрешность будет. Этот связано с процессом трения, происходящим в осях.

Вторая таблица относится к набору гирь. На ней указано, что каждая из них имеет свою погрешность массы. 10-граммовая имеет погрешность в 1 мг, как и 20-граммовая. Просчитаем сумму погрешностей каждой из этих гирек, взятой из таблицы.

Удобно писать массу и погрешность массы в двух строчках, которые расположены одна под другой. Чем меньше гири, тем точнее измерение.

Итоги

В ходе рассмотренного материала установлено, что определить абсолютную погрешность невозможно. Можно лишь установить её граничные показатели. Для этого используются формулы, описанные выше в вычислениях. Данный материал предложен для изучения в школе для учеников 8-9 классов. На основе полученных знаний можно решать задачи на определение абсолютной и относительной погрешности.

Допустим, что мы проводим серию из n измерений одной и той же величины х . Из-за наличия случайных ошибок отдельные значения х 1 , х 2 , х 3, х n неодинаковы, и в качестве наилучшего значения искомой величины выбирается среднее арифметическое , равное арифметической сумме всех измеренных значений, деленной на число измерений:

где å - знак суммы, i - номер измерения, n - число измерений.

Итак, - значение, наиболее близкое к истинному. Истинного же значения никто не знает. Можно лишь рассчитать интервал Dх вблизи , в котором истинное значение может находиться с некоторой степенью вероятности р . Этот интервал называется доверительным интервалом . Вероятность, с которой истинное значение в него попадает, называется доверительной вероятностью, или коэффициентом надежности (так как знание доверительной вероятности позволяет оценить степь надежности полученного результата). При расчете доверительного интервала необходимая степень надежности задается заранее. Она определяется практическими потребностями (например, к деталям мотора самолета предъявляются более жесткие требования, чем к лодочному мотору). Очевидно, для получения большей надежности требуется увеличение числа измерений и их тщательности.

Благодаря тому, что случайные погрешности отдельных измерений подчиняются вероятностным закономерностям, методы математической статистики и теории вероятностей позволяют рассчитать среднюю квадратичную погрешность среднего арифметического значения сл. Запишем без доказательства формулу для расчета сл при малом числе измерений (n < 30).

Формулу называют формулой Стьюдента:

где t n, p - коэффициент Стьюдента, зависящий от числа измерений n и доверительной вероятности р .

Коэффициент Стьюдента находят по таблице, приведенной ниже, предварительно определив, исходя из практических потребностей (как было сказано выше), величины n и р .

При обработке результатов лабораторных работ достаточно провести 3-5 измерений, а доверительную вероятность принять равной0,68.

Но бывает так, что при многократных измерениях получаются одинаковые значения величины х . Например, 5 раз измерили диаметр проволоки и 5 раз получили одно и то же значение. Так вот, это вовсе не значит, что погрешности нет. Это значит только то, что случайная погрешность каждого измерения меньше точности прибора d, которую также называют приборной ,или инструментальной , погрешностью. Инструментальная погрешность прибора d определятся по классу точности прибора, указанному в его паспорте, либо указывается на самом приборе. А иногда принимается равной цене деления прибора (цена деления прибора - значение его самого маленького деления) либо половине цены деления (если на глаз приблизительно можно определить половину цены деления прибора).


Так как каждое из значений х i получено с погрешностью d, то полный доверительный интервал , или абсолютную погрешность измерения, рассчитывают по формуле:

Заметим, что если в формуле (П.3) одна из величин хотя бы в 3 раза больше другой, то меньшей пренебрегают.

Абсолютная погрешность сама по себе не отражает качества проведенных измерений. Например, только по информации абсолютная погрешность равна 0,002 м² нельзя судить о том, сколь хорошо было проведено данное измерение. Представление о качестве проведенных измерений дает относительная погрешность e, равная отношению абсолютной погрешности к среднему значению измеряемой величины. Относительная погрешность показывает, какую долю составляет абсолютная погрешность от измеренного значения. Как правило, относительную погрешность выражают в процентах:

Рассмотрим пример. Пусть диаметр шара измеряется с помощью микрометра, инструментальная погрешность которого d = 0,01 мм. В результате трех измерений получились следующие значения диаметра:

d 1 = 2,42 мм, d 2 = 2,44 мм, d 3 = 2,48 мм.

По формуле (П.1) определяют среднее арифметическое значение диаметра шара

Затем по таблице коэффициентов Стьюдента находят, что для доверительной вероятности 0,68 при трех измерениях t n, p = 1,3. После чего по формуле (П.2) рассчитывают случайную погрешность измерения Dd сл

Так как полученная случайная погрешность всего в два раза превышает приборную погрешность, то при нахождении абсолютной погрешности измерения Dd по (П.3) следует учитывать и случайную погрешность, и погрешность прибора, т. е.

Мм » ±0,03 мм.

Погрешность округлили до сотых миллиметра, так как точность результата не может превышать точность измерительного прибора, которая в данном случае составляет 0,01 мм.

Итак, диаметр проволоки равен

Данная запись говорит о том, что истинное значение диаметра шара с вероятностью 68 % лежит в интервале (2,42 ¸ 2,48) мм.

Относительная погрешность e полученного значения согласно (П.4) составляет

Классы точности приборов

Класс точности средства измерения определяет пределы допускаемых основной и дополнительной погрешностей. Эти пределы выражаются в форме приведенной относительной, относительной или абсолютной погрешностей. Если аддитивная погрешность средства измерений преобладает над мультипликативной, то класс точности выражается в виде приведенной относительной погрешности:

где р – отвлеченное положительное число, выбираемое из ряда (n = 1, 0, -1, -2, -3…). Для аналоговых приборов обычно р принимает значения 0,05; 0,1; 0,2; 0,5; 1; 1,5; 2,5; 4.

Если мультипликативная погрешность средства измерения преобладает над аддитивной, то класс точности выражается через относительную погрешность:

Для средств измерений с аддитивной и мультипликативной погрешностями класс точности выражается двучленной формулой:

где и - числа из приведенного выше ряда, причем , - конечное значение диапазона измерений прибора, - измеренное значение. Обычно такой способ выражения класса точности используется для цифровых приборов, многозначных мер и приборов сравнения.

У аналоговых приборов обозначение класса точности выносится на лицевую панель. Если класс точности равен относительной приведенной погрешности, то класс точности обозначается в виде числа из приведенного выше ряда, например, 0,5 . Если шкала прибора существенно неравномерная, то класс точности обозначается в виде числа с галочкой, например , а если класс точности выражается через относительную погрешность, то число из ряда заключается в скобки, например (2,5) или в окружность.

Для средств измерений с аддитивной и мультипликативной погрешностями класс точности выражается в виде дроби , например 0,02/0,01 .

Погрешности измерения можно разделить на три класса:

а) систематические; б) случайные; в) промахи.

К систематическим погрешностям относятся:

- инструментальные погрешности, которые, в свою очередь, складываются из приборной погрешности (класс точности) и погрешности от взаимодействия средства измерения с источником сигнала (зависит от входного сопротивления прибора);

- дополнительные погрешности из-за влияния внешних факторов (температура, магнитное поле и т. п.);

- личные погрешности , вызываемые индивидуальными особенностями наблюдателя;

Погрешности метода измерений .

Например, погрешность от взаимодействия средства измерения с источником сигнала при измерении тока в цепи с сопротивлением и сопротивлении амперметра равна:

Погрешность от взаимодействия средства измерения с источником сигнала при измерении напряжения на участке цепи сопротивлением и сопротивлении вольтметра равна:



Эти формулы применимы и при измерении мощности и энергии электрического тока.

Приборная погрешность зависит от класса точности. Если класс точности прибора выражается через приведенную погрешность , то относительная погрешность показания прибора будет равна для амперметра:

где - показание амперметра, - его номинальное значение.

Аналогично и для вольтметра:

Если класс точности выражается через относительную погрешность , то погрешность показания равна классу точности прибора.

Дополнительные погрешности, так же относящиеся к систематическим инструментальным погрешностям, обусловлены отклонением условий измерений от нормальных.

Так, например, в схемах амперметров с шунтами, так как шунты делают из манганина (сопротивление манганина практически не зависит от температуры), приходится применять схемы температурной компенсации. В простейшем случае последовательно с рамкой включают сопротивление r 1 из манганина, рис. 1.

Тогда температурный коэффициент сопротивления цепи рамки уменьшится и температурная погрешность будет определяться формулой:

где β 0 -температурный коэффициент сопротивления цепи рамки;

r 0 - сопротивление рамки, пружинок и соединительных проводов;

r ш - сопротивление шунта;

r 1 - добавочное сопротивление из манганина;

; - температура во время измерения.

В приборах высокого класса точности применяют последовательно-параллельную схему температурной компенсации.

При отсутствии температурной компенсации:

Температурная погрешность магнитоэлектрических вольтметров определяется формулой:

где - добавочное сопротивление из манганина.

Из формулы видно, что температурную погрешность вольтметра можно уменьшить, увеличивая добавочное сопротивление из манганина.

Для электромагнитных и электродинамических вольтметров температурная погрешность зависит от температурного коэффициента момента пружин и температурного коэффициента сопротивления катушек и определяется формулой:

где - температурный коэффициент момента пружинок (он отрицателен и составляет 0,2¸0,3% на 10°С).

Второй член этого выражения зависит от предела измерения прибора. Наибольшей погрешностью обладает вольтметр на самом низком пределе измерения, т.к. в этом случае минимально.

В электродинамических амперметрах с последовательной схемой соединения катушек и в электромагнитных амперметрах температура влияет только на упругие свойства пружин. Поэтому температурная погрешность их не превышает ±0,2% на 10°С и не требует специальных способов компенсации.

На электродинамические и электромагнитные вольтметры существенное влияние оказывает частота. Главной причиной расхождения их показаний на постоянном и переменном токе является наличие индуктивного сопротивления .

Частотная погрешность при переходе от постоянного тока к переменному рассчитывается как:

где r – сопротивление вольтметра на постоянном токе;

r а – активное сопротивление цепи вольтметра на переменном токе.

При частотах до 2000 Гц, на которых работают эти приборы, можно считать отличие и , обусловленное вихревыми токами, в толще меди обмотки и окружающих металлических частях пренебрежимо малым. Тогда, принимая r а r , получим:

Отклонение подвижной части выпрямительного прибора пропорционально средневыпрямленному значению протекающего через него тока. Поэтому измерить действующее значение переменного тока можно только в том случае, если известен коэффициент формы кривой переменного тока. Обычно шкалы выпрямительных приборов градуируются в действующих значениях при синусоидальной форме кривой, умножая для этого показания прибора на коэффициент формы =1,11 (так как для синусоиды ).

Если формы кривой отличаются от синусоидальной, в показаниях возникает погрешность, присущая методу измерения:

Методические погрешности обусловлены несовершенством метода измерения и, в частности, несовершенством схемы измерения. Так при косвенных измерениях сопротивления и мощности, потребляемой нагрузкой, методом амперметра и вольтметра обычно используют две схемы, рис. 2.

Погрешности измерения сопротивления ∆ и самого по схеме а) равны:

где и показания приборов.

Погрешности измерения по схеме б):

Субъективные или личные погрешности у опытных экспериментаторов обычно малы и ими пренебрегают по сравнению с другими составляющими суммарной систематической погрешности. Принято считать, что эта погрешность Δ отс,п (погрешность отсчитывания) не превышает 20% от постоянной прибора, т.е.

Поскольку погрешность измерениявеличинасуммарная, то припрямых измерениях:

а) Для вероятности Р = 1 находят предельные значения погрешности измерения Δ п путём арифметического суммирования предельных значений составляющих Δ i ,п:

Составляющими могут быть:

– основная погрешность Δ о,п;

– дополнительные погрешности Δ д,п;

– погрешность отсчитывания Δ отс,п;

– погрешность взаимодействия Δ вз,п.

При таком способе суммирования получается сильно завышенноее погрешности, ибо маловероятно, чтобы все составляющие оказались на своих пределах и были при этом одного и того же знака (плюс или минус). Зато этот способ даёт полную гарантию.

б) Для вероятности Р < 1 находят граничные значения погрешности измерения Δ гр путём статистического суммирования предельных значений составляющих Δ i ,п:

Δ гр = ± К .

Значение К зависит от законов распределения случайных величин Δ i и от задаваемого значения вероятности Р . Если законы распределения неизвестны, рекомендуется принять, что для всех составляющих это закон равномерной плотности. При этом из теории вероятностей следует, что значения К при разных значениях Р соответствуют приведённым в таблице:

Р 0,9 0,95 0,99
К 0,95 1,1 1,4

Суммарная погрешность при косвенных измеренияхнаходится по аналогичным формулам.

В этом случае известна функциональная зависимость результата косвенного измерения Y от аргументов Х 1 ; Х 2 ;…Х n :

(Пример: R = здесь Y = R ; Х 1 = U ; X 2 = I) .

Требуется найти погрешность ΔY , происходящую от погрешностей ΔХ 1 ; ΔХ 2 ;… ΔХ n .

Пусть: ΔY = Δ; ΔХ 1 = Δ 1 ; ΔХ 2 = Δ 2 ;… ΔХ n = Δ n , тогда по формуле полного дифференциала:

Предельные значения суммарной абсолютной погрешности:

При Р < 1 применяют статистическое суммирование:

где К зависит от задаваемого значения вероятности Р так же, как при прямых измерениях (см. табл.).

Таким образом, систематические погрешности измерения при тщательной постановке опыта могут быть учтены и даже устранены.

Случайные погрешности и промахи контролю не поддаются, так как они появляются в результате одновременного действия многих различных причин. Эти погрешности подчиняются законам больших чисел, поэтому здесь возможен только статистический учет, подчиняющийся теории вероятностей.

Случайные погрешности и промахи обнаруживаются при многократных измерениях заданной величины в одних и тех же условиях.

Пусть при измерениях систематические погрешности пренебрежимо малы. Рассмотрим случай, когда измерение проведено большое число раз (n→∞).

Как показывает опыт, отклонение результатов измерений от их среднего значения в большую или меньшую сторону одинаковы. Результаты измерений с малым отклонением от среднего значения наблюдается значительно чаще, чем с большими отклонениями.

Расположим все численные значения результатов измерений в ряд в порядке их возрастания и разделим этот ряд на равные интервалы
. Пусть– число измерений с результатом, попавшим в интервал [
]. Величина
есть вероятность ΔP i (х) получения результата со значением в интервале [
].

Графически представим
, соответствующее каждому интервалу [
] (рис.1). Изображенная на рис.1 ступенчатая кривая называется гистограммой. Допустим, что измерительный прибор обладает чрезвычайно высокой чувствительностью. Тогда ширину интервала можно сделать бесконечно малой величинойdx. Ступенчатая кривая в этом случае заменяется кривой, представляемой функцией φ(х) (рис.2). Функцию φ(х) принято называть функцией плотности распределения. Её смысл состоит в том, что произведение φ(х)dx есть вероятность dP(x) получения результатов со значением в интервале от х до х+dх. Графически значение вероятности представляется в виде площади заштрихованного прямоугольника. Аналитически функция плотности распределения записывается следующим образом:

. (5)

Представленную в виде (5) функцию φ(х) называют функцией Гаусса, а соответствующее распределение результатов измерений Гауссовым или нормальным.

Параметры
иσ имеют следующий смысл (рис.2).

–среднее значение результатов измерений. При
=
функция Гаусса достигает максимального значения. Если число измерений бесконечно велико, то
равно истинному значению измеряемой величины.

σ – характеризует степень разброса результатов измерения от их среднего значения. Параметр σ вычисляется по формуле:

. (6)

Этот параметр представляет собой среднеквадратичную погрешность. Величину σ 2 в теории вероятностей называют дисперсией функции φ(х).

Чем выше точность измерений, тем ближе располагаются результаты измерений к истинному значению измеряемой величины, и, следовательно, меньше σ.

Вид функции φ(х), очевидно, не зависит от числа измерений.

В теории вероятностей показано, что 68% всех измерений дадут результат, который располагается в интервале , 95% – в интервале и 99,7% в интервале .

Таким образом, с вероятностью (надёжностью) 68% величина отклонения результата измерения от среднего значения лежит в интервале [
], с вероятностью (надёжностью) 95% – в интервале [
] и с вероятностью (надежностью) 99,7% – в интервале [
].

Интервал, соответствующий той или иной вероятности отклонения от среднего значения, называется доверительным.

В реальных экспериментах число измерений, очевидно, не может быть бесконечно большим, поэтому маловероятно, чтобы
совпало с истинным значением измеряемой величины
. В связи с этим важно оценить на основе теории вероятностей величину возможного отклонения
от
.

Расчеты показывают, что при числе измерений более 20 с вероятностью 68%
попадает в доверительный интервал [
], с вероятностью 95% – в интервале[
], с вероятностью 99,7% – в интервале [
].

Величина , определяющая границы доверительного интервала, называется стандартным отклонением или просто – стандартом.

Стандарт вычисляется по формуле:

. (7)

С учетом формулы (6), выражение (7) приобретает следующий вид:

. (8)

Чем больше число измерений n, тем ближе Х располагается к
. Если число измерений не велико меньше 15, то вместо распределения Гаусса используют распределение Стьюдента, которое приводит к увеличению ширины доверительного интервала возможного отклонения Х от
вt n , p раз.

Сомножитель t n , p называется коэффициентом Стьюдента. Индексы Р и n указывают, с какой надежностью и какому числу измерений соответствует коэффициент Стьюдента. Величина коэффициента Стьюдента для данного числа измерений и заданной надежности определяется по таблице 1.

Таблица 1

Коэффициент Стьюдента.

Например, при заданной надежности 95% и числе измерений n=20 коэффициент Стьюдента t 20,95 =2,1 (доверительный интервал
) при числе измеренийn=4, t 4,95 =3,2 (доверительный интервал
). То есть, при увеличении числа измерений с 4 до 20 возможное отклонение
отX уменьшается в 1,524 раза.


Ниже приводится пример расчета абсолютной случайной погрешности

Х i –

(Х i – ) 2

По формуле (2) находим среднее значение измеряемой величины
(без указания размерности физической величины)

.

По формуле (8) вычисляем величину стандартного отклонения

.

Коэффициент Стьюдента, определенный для n=6, и Р=95%, t 6,95 =2,6 окончательный результат:

Х=20,1±2,6·0,121=20,1±0,315 (с Р=95%).

Вычисляем относительную погрешность:

.

При записи окончательного результата измерений нужно иметь в виду, что погрешность должна содержать только одну значащую цифру (отличную от нуля). Две значащие цифры в погрешности записываются лишь в том случае, если предпоследняя цифра 1. Большее число значащих цифр записывать бесполезно, поскольку они будут не достоверны. В записи среднего значения измеряемой величины последняя цифра должна принадлежать тому же разряду, что и последняя цифра в записи погрешности.

Х=(243±5)·10 2 ;

Х=232,567±0,003.

При проведении нескольких измерений может получится один и тот же результат. Это возможно в том случае, если чувствительность измерительного прибора низкая. Когда измерение производится прибором с низкой чувствительностью достаточно и однократного измерения. Не имеет смысла, например, многократно измерять длину стола рулеткой с сантиметровыми делениями. Результат измерения в этом случае будет один и тот же. Погрешность при проведении однократного измерения определяется ценой наименьшего деления прибора. Она называется приборной погрешностью. Её значение
вычисляется по следующей формуле:

, (10)

где γ – цена деления прибора;

t ∞, p – коэффициент Стьюдента, соответствующий бесконечно большому числу измерений.

С учетом приборной погрешности, абсолютная погрешность с заданной надежностью определяется по формуле:

, (11)

где
.

С учетом формул (8) и (10), (11) записывается так:

. (12)

В литературе для сокращения записи величину погрешности иногда не указывают. Предполагается, что величина погрешности составляет половину единицы последней значащей цифры. Так, например, величина радиуса Земли записана в виде
м. Это означает, что в качестве погрешности следует взять величину, равную ±
м.